Enzymatic Oil Refining:
The Solution to Quality and Profitability

W. De Greyt and M. Kellens
Desmet Ballestra Group
Zaventem, Belgium
Edible Oil Refining

‘Purpose of refining of oils for edible uses is to remove undesirable substances and components while maintaining the nutritional quality and stability of the refined oil’

Undesirable components
- FFA
- Phospholipids
- Traces of metals
- Pigments
- Contaminants
- Colouring components

Quality requirements
- Good stability
- Good shelf life
- Bland odor & taste
- Good nutritional quality
- Safe (no contaminants)
- Healthy (vitamins)

Required refining capacity: > 500,000 TPD
Gradual improvement of the process technology

* Processing under low vacuum (for oil quality reasons);
* Evolution from batch to semi- to continuous operation (plant performance);
* Optimized deodorization (low pressure, optimum heat recovery)
* Milder processing, less chemicals (chem > phys)

USE OF ENZYMES
ENZYMATIC OIL REFINING

1. Mechanical Pressing
2. Solvent extraction
3. Enzymes in Oil Refining
4. Alkali Neutralisation
5. Acid degumming

Crude Oil → Oil Extraction → Deoiled Meal

Soapstock

Alkali Neutralisation → Bleaching

Deodorization → Deodorizer Distillate → Refined Oil

Spent bleaching earth

Acid Gums

Physical deacidification Deodorization

Chemical

Physical
Enzymatic Oil Refining: some proven, some under development and some waiting to be proven industrially

<table>
<thead>
<tr>
<th>Enzymatic Process</th>
<th>Objective</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscella Degumming</td>
<td>Max. PL removal + yield increase. On crude oil miscella (crushing plant)</td>
<td>Under development</td>
</tr>
<tr>
<td>(Partial)Water Degumming</td>
<td>Partial PL removal + yield increase. On crude, non-WDG oils (crushing plant)</td>
<td>Industrially applied</td>
</tr>
<tr>
<td>Gums Deoiling</td>
<td>Max. Oil recovery from wet gums On wet gums (crushing plant)</td>
<td>Ready for industrial application</td>
</tr>
<tr>
<td>Full (‘deep’) Degumming</td>
<td>Full PL removal + yield increase On waterdegummed oils (refining plant)</td>
<td>Industrially applied</td>
</tr>
<tr>
<td>Bleaching</td>
<td>Degradation of color pigments On waterdegummed oils (refining plant)</td>
<td>Under development</td>
</tr>
</tbody>
</table>

Enzymatic Oil Degumming : industrially proven and well accepted

Efficient degumming and higher oil yield
Enzymatic oil degumming

The degumming process for the 21st century finally come true?

CURRENT SITUATION

- Availability of more stable & (cost-) efficient enzymes
- Different enzymes/enzyme suppliers
 - Lecitase Ultra (PL-A1, Novozymes)
 - Rohalase PL-XTRA (PL-A2, AB Enzymes)
 - Lysomax Oil (LAT, PL-A2, Du Pont)
 - Purifine PLC (PL-C, DSM)
 - Purifine 2G/3G (PL-C + PL-A2, DSM)
- Different approach
 - Increased oil yield as main driver
 - (Also) applied on crude oils

Chemical Structure

![Chemical structure diagram](image)

- Phospholipase A1
- Phospholipase A2
- Phospholipase B
- Phospholipase C
- Phospholipase D

- R_1, R_2 can be H, choline, ethanolamine, serine, inositol, etc.

$X = H, \text{choline, ethanolamine, serine, inositol, etc.}$
* Worldwide: > 30 crushing/refining plants applying enzymatic degumming

* Mostly soybean oil processors in Latin America and USA
Enzymatic water degumming

✓ Applied in crushing plants
 * On crude oil
 * With PL-C or PL-C/PL-A cocktails
 * Not for Lecithin producers

✓ Higher oil yield is main driver
 * Max. generation of diglycerides (from PL)
 * Some formation of FFA (also from PL)
 * Less oil entrainment in less gums

✓ Net revenue will depend on:
 * PL-content in crude oil (highest in soybean oil from expandates)
 * Price difference between WDG oil and meal (lecithin!)
 * Enzyme cost (enzyme price x dosing rate)
Enzymatic water degumming: PLC most preferred

Phospholipids

\[
\begin{align*}
\text{CH}_2-\text{O}-\text{C}-\text{R}_1 \\
\text{R}_2\text{-C-O-CH} \\
\text{HO-P-O-}\text{X} \\
\text{CH}_2-\text{O-P-O-}\text{X} \\
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{O} \\
\text{PLC} \\
\text{CH}_2-\text{O-C-}\text{R}_1 \\
\text{R}_2\text{-C-O-CH} \\
\text{HO-P-O-}\text{X} \\
\text{CH}_2-\text{O-P-O-}\text{X} \\
\end{align*}
\]

DIGLYCERIDES

PHOSPHATE-ESTER

Yield increase:

\[
\text{DAG} + \text{Less entrained Neutral Oil in less gums}
\]

<table>
<thead>
<tr>
<th>Commercial Enzyme</th>
<th>Active enzymes</th>
<th>Selectivity</th>
<th>Conversion products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purifine® - PLC</td>
<td>PLC</td>
<td>Only PC+ PE</td>
<td>Only DAG</td>
</tr>
<tr>
<td>Purifine® - 2G</td>
<td>PLC + PLA2</td>
<td>Mainly PC + PE</td>
<td>Mainly DAG + some FFA</td>
</tr>
<tr>
<td>Purifine® - 3G</td>
<td>PLC + PLA2 + PI-PLC</td>
<td>PC + PE + PI</td>
<td>Mainly DAG + some FFA</td>
</tr>
</tbody>
</table>
Enzymatic water degumming of soybean oil

Crude soybean oil: Phospholipid composition

<table>
<thead>
<tr>
<th></th>
<th>Crude oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PL (%)</td>
<td>2.06</td>
</tr>
<tr>
<td>PC</td>
<td>0.70</td>
</tr>
<tr>
<td>PE</td>
<td>0.54</td>
</tr>
<tr>
<td>PI</td>
<td>0.36</td>
</tr>
<tr>
<td>PA</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Enzymatic water degumming with Purifine 3G (=PLC + PLA2 + PI-PLC)

<table>
<thead>
<tr>
<th></th>
<th>Crude</th>
<th>Enzymatic degummed</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFA (%)</td>
<td>0.83</td>
<td>1.18</td>
</tr>
<tr>
<td>P</td>
<td>845</td>
<td>52</td>
</tr>
<tr>
<td>Ca</td>
<td>111</td>
<td>27</td>
</tr>
<tr>
<td>Mg</td>
<td>117</td>
<td>17</td>
</tr>
<tr>
<td>DAG (%)</td>
<td>0.87</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Max. theoretical DAG formation:

\[
\text{Max. theoretical DAG formation} = PC \times 0.7717 + PE \times 0.8154 + PI \times 0.7027 \\
= 1.23\%
\]

- Slight FFA increase (from PLA2 action)
- No deep degumming (yet)
- 0.62% extra DAG (PLC action)
 = approx. 50% of theoretical max.
Extra Revenue from Enzymatic Water degumming

Average Δ (01/2013 – 09/2015) : 400 USD/ton
Average Δ (01/2010 – 09/2015) : 550 USD/ton

Determining Factors

✓ Price difference oil – meal
✓ Enzyme cost
✓ Achievable oil yield increase

Revenue i.f.o. enzyme cost and Δ (oil-meal)

1.8% oil yield increase

Oil and Enzyme dependent
Extra Oil Yield Increase from Enzymatic Water degumming

Enzymatic WDG with Purifine®

- **Enzymatic WDG of crude soybean oil with 2.5% phospholipids**

INDUSTRIAL DATA

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Oil yield increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purifine® - PLC</td>
<td>1.4-1.7</td>
</tr>
<tr>
<td>Purifine® - 2G</td>
<td>1.9</td>
</tr>
<tr>
<td>Purifine® - 3G</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Source: Ventrici, E., Molinos. Data presented at the 2014 AOCS Conference (Orlando, FL)

Highest Oil Yield increase with Purifine 3G on crude soybean oil from expandates (max. P content)

Feedstock dependent (ppm P)
Full ‘deep’ enzymatic degumming

✔ Applied in crushing or refining plants
 * On crude or waterdegummed oil
 * With PL-A₁ or PL-A₂
 * Not yet fully proven with Purifine® enzymes

✔ Degumming efficiency vs Yield increase
 * Efficient degumming (P < 10 ppm) required
 * Yield increase from formation of FFA and reduced entrained oil in gums
 * FFA will be stripped during refining and valorized as distillate

✔ Applications
 * Mainly on (crude) soybean oil, but also on other oils (rape, sun,...)
 * As part of the pretreatment process for biodiesel production
 * Missing link for physical refining of soft oils?
Full 'deep' enzymatic degumming

Phospholipids

\[\text{R}_2\text{-C-O-CH} + \text{H}_2\text{O} \rightarrow \text{R}_2\text{-C-O-CH OH} \]

Lyso-Phospholipids

\[\text{CH}_2\text{-O-P-O-}X \]

\[\text{O}^{\cdot} \]

\[\text{O}^{\cdot} \]

\[\text{R}_1 \]

\[\text{CH}_2\text{-O-P-O-}X \]

\[\text{O}^{\cdot} \]

\[\text{O}^{\cdot} \]

\[\text{R}_1 \]

\[\text{CH}_2\text{-O-C-} \]

\[\text{O}^{\cdot} \]

\[\text{O}^{\cdot} \]

\[\text{R}_1 \]

PLA1

\[\text{CH}_2\text{-O-P-O-}X \]

\[\text{O}^{\cdot} \]

\[\text{O}^{\cdot} \]

\[\text{R}_1 \]

+ PLA2

\[\text{H-O-C-} \]

\[\text{O}^{\cdot} \]

\[\text{O}^{\cdot} \]

\[\text{R}_1 \]

FFA

Yield increase: FFA + Less entrained Neutral Oil in less gums

Valorized as deodorizer distillate

✓ Phospholipase- A1 (Lecitase Ultra, Novozymes) : most industrially applied
✓ Phospholipase-A2 (Rohalase PL-XTRA, AB Enzymes) – splits off FFA at sn-2 position
✓ Conversion of ALL phospholipids in hydratable lyso-phospholipids and FFA
Deep Enzymatic Degumming of Crude Soybean Oil

- After **10 min.**: good degumming (32 ppm P), but almost no yield increase (Δ FFA = 0.1%)
- After **120 min.**: good degumming (7 ppm P), and good yield increase (Δ FFA = 0.5%)

Reaction time required for yield increase
Applications

Crude Oil → DEEP ENZYMATIC DEGUMMING → EDG Oil → Silica treatment or washing

Distillate → FFA stripping → Transesterification → BIODIESEL

Acid Esterification

Additional biodiesel yield

Lyso-Gums

Bleaching → Physical deacidification Deodorization

Distillate → Refined Food Oil

meeting EN/ASTM specs

Light color, bland taste
Good stability
No contaminants,

Extra biodiesel yield
Deep Enzymatic Degumming of Rapeseed Oil

Enzyme assisted Acid degumming ↔ **Acid assisted Enzymatic degumming**

<table>
<thead>
<tr>
<th></th>
<th>Crude Oil</th>
<th>Rohalase PL-XTRA (PLA2)</th>
<th>Lecitase Ultra (PLA1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil conditioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citric acid (ppm)</td>
<td>300</td>
<td>650</td>
<td>300</td>
</tr>
<tr>
<td>NaOH (ppm)</td>
<td>65</td>
<td>150</td>
<td>90</td>
</tr>
<tr>
<td>Enzyme reaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzyme dosing (ppm)</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Reaction time (hr)</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Oil quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFA</td>
<td>1.42</td>
<td>1.56</td>
<td>1.68</td>
</tr>
<tr>
<td>P</td>
<td>477</td>
<td>83</td>
<td>4.6</td>
</tr>
<tr>
<td>Ca + Mg</td>
<td>231</td>
<td>77</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- Deep enzymatic degumming (P < 5 ppm) is possible with PLA1 & PLA2
- Correct acid conditioning and enzyme dosing is required
Deep Enzymatic Degumming for Biodiesel Production

Crude Rapeseed oil

Enzymatic degumming
(50 ppm Lecitase Ultra – 90 min.-55°C)

Silica treatment
(500 ppm citric acid – 0.3% Silica)

FFA stripping
(235°C - 3mbar – 1.5% steam – 90 min)

Crude RS oil
FFA : 2.40%
P : 552 ppm
Ca : 213 ppm
Mg : 50 ppm

Refined RS oil
FFA : 0.15%
P : 0.9 ppm
Ca/Mg : < 0.5 ppm

BIODIESEL
MAG : 0.43%
DAG : 0.12%
TAG : 0.09%
Free SG : 11 ppm
Brilliant appearance

BIODEILE PRODUCTION

Good quality
Enzymatic degumming: current situation

Most widely applied enzymatic oil process

• Different enzyme (cocktails) are today commercially available
• Enzymatic waterdegumming or deep degumming
• Proven oil yield increase

Conversion of PL in FFA or diglycerides
Less neutral oil entrainment in the lyso-gums phase

Why not applied more?

• Economical reasons (crude oil vs lecithin vs meal price)
• Process reasons (consistent full enzymatic degumming remains a challenge)
• Confusion (when to apply, on which oil, what to do with sidestream, dependency..)

Is enzymatic gums deoiling an alternative?
Enzymatic gums deoiling: potential benefits

Wet Gums → Enzyme reaction → Lyso-Lecithin + Recovered Oil

1. Applied on a side stream (wet gums) with no impact on the degumming process
 * Wet gums: 4-5% of crude oil flow (40-50 TPD vs 1000 TPD enzymatic degumming for SBO)

2. High flexibility
 * Can be applied depending on economics (lecithin vs oil vs meal)

3. Recovered oil (additional yield) is collected as separate stream
 * Can be recycled back to crude/WDG oil or valorized separately (e.g. biodiesel)

4. Potential lower enzyme consumption (compared to oil degumming)
Recovered oil quality (from soy gums)

Soy gums with 41% moisture and 32% NO on DM, 250-400 ppm Lecitase Ultra, 4-6 hr at 55°C

Oil recovery : up to 90% (on NO in gums) = \textbf{0.8-1.0%} on crude soy oil

Recovered oil quality :

- FFA : 30-35%
- P-content : 70-100 ppm
Conclusions

✓ Enzymatic oil processing appeals to the growing demand for milder and more sustainable refining;

✓ Today, enzymatic oil degumming is the only industrially proven enzymatic process in oil refining

✓ Enzymatic water degumming is successfully applied on crude soybean oil, but not yet with same success on other crude oils (too low P-content)

✓ Full enzymatic degumming is mostly applied in the pretreatment of soybean/rapeseed oil for biodiesel production.

✓ Enzymatic lecithin deoiling is an interesting alternative, ready to be tested industrially (PLC/PLA cocktail)
Thank you for your attention!!